525 research outputs found

    Raman scattering in a two-dimensional electron gas: Boltzmann equation approach

    Get PDF
    The inelastic light scattering in a 2-d electron gas is studied theoretically using the Boltzmann equation techniques. Electron-hole excitations produce the Raman spectrum essentially different from the one predicted for the 3-d case. In the clean limit it has the form of a strong non-symmetric resonance due to the square root singularity at the electron-hole frequency ω=vk\omega = vk while in the opposite dirty limit the usual Lorentzian shape of the cross section is reestablished. The effects of electromagnetic field are considered self-consistently and the contribution from collective plasmon modes is found. It is shown that unlike 3-d metals where plasmon excitations are unobservable (because of very large required transfered frequencies), the two-dimensional electron system gives rise to a low-frequency (ωk1/2\omega \propto k^{1/2}) plasmon peak. A measurement of the width of this peak can provide data on the magnitude of the electron scattering rate.Comment: 4 pages, 3 figures. to appear in Phys. Rev. B 59 (1999

    Mesoscopic Spin-Hall Effect in 2D electron systems with smooth boundaries

    Full text link
    Spin-Hall effect in ballistic 2D electron gas with Rashba-type spin-orbit coupling and smooth edge confinement is studied. We predict that the interplay of semiclassical electron motion and quantum dynamics of spins leads to several distinct features in spin density along the edge that originate from accumulation of turning points from many classical trajectories. Strong peak is found near a point of the vanishing of electron Fermi velocity in the lower spin-split subband. It is followed by a strip of negative spin density that extends until the crossing of the local Fermi energy with the degeneracy point where the two spin subbands intersect. Beyond this crossing there is a wide region of a smooth positive spin density. The total amount of spin accumulated in each of these features exceeds greatly the net spin across the entire edge. The features become more pronounced for shallower boundary potentials, controlled by gating in typical experimental setups.Comment: 4 pages, 4 figures, published versio

    Infrared absorption and Raman scattering on coupled plasmon--phonon modes in superlattices

    Full text link
    We consider theoretically a superlattice formed by thin conducting layers separated spatially between insulating layers. The dispersion of two coupled phonon-plasmon modes of the system is analyzed by using Maxwell's equations, with the influence of retardation included. Both transmission for the finite plate as well as absorption for the semi-infinite superlattice in the infrared are calculated. Reflectance minima are determined by the longitudinal and transverse phonon frequencies in the insulating layers and by the density-state singularities of the coupled modes. We evaluate also the Raman cross section from the semi-infinite superlattice.Comment: 20 pages,14 figure

    Optical Conductivity of a Two-Dimensional Electron Liquid with Spin-Orbit Interaction

    Get PDF
    The interplay of electron-electron interactions and spin-orbit coupling leads to a new contribution to the homogeneous optical conductivity of the electron liquid. The latter is known to be insensitive to many-body effects for a conventional electron system with parabolic dispersion. The parabolic spectrum has its origin in the Galilean invariance which is broken by spin-orbit coupling. This opens up a possibility for the optical conductivity to probe electron-electron interactions. We analyze the interplay of interactions and spin-orbit coupling and obtain optical conductivity beyond RPA.Comment: 5 pages, 3 figures; final version, fig. 3 added, minor change

    Spin current and polarization in impure 2D electron systems with spin-orbit coupling

    Full text link
    We derive the transport equations for two-dimensional electron systems with spin-orbit interaction and short-range spin-independent disorder. In the limit of slow spatial variations of the electron distribution we obtain coupled diffusion equations for the electron density and spin. Using these equations we calculate electric-field induced spin accumulation in a finite-size sample for arbitrary ratio between spin-orbit energy splitting and elastic scattering rate. We demonstrate that the spin-Hall conductivity vanishes in an infinite system independent of this ratio.Comment: 5 pages, 1 figure; revised version according to referee's commment

    Small-angle impurity scattering and the spin Hall conductivity in 2D systems

    Full text link
    An arbitrarily small concentration of impurities can affect the spin Hall conductivity in a two-dimensional semiconductor system. We develop a Boltzmann-like equation that can be used for impurity scattering with arbitrary angular dependence, and for arbitrary angular dependence of the spin-orbit field b(k) around the Fermi surface. For a model applicable to a 2D hole system in GaAs, if the impurity scattering is not isotropic, we find that the spin Hall conductivity depends on the derivative of b with respect to the energy and on deviations from a parabolic band structure, as well as on the angular dependence of the scattering. In principle, the resulting spin Hall conductivity can be larger or smaller than the ``intrinsic value'', and can have opposite sign. In the limit of small angle scattering, in a model appropriate for small hole concentrations, where the band is parabolic and b ~ k^3, the spin Hall conductivity has opposite sign from the intrinsic value, and has larger magnitude. Our analysis assumes that the spin-orbit splitting bb and the transport scattering rate tau^{-1} are both small compared to the Fermi energy, but the method is valid for for arbitrary value of b*tau.Comment: Errors corrected, references adde

    Competition between excitonic gap generation and disorder scattering in graphene

    Full text link
    We study the disorder effect on the excitonic gap generation caused by strong Coulomb interaction in graphene. By solving the self-consistently coupled equations of dynamical fermion gap mm and disorder scattering rate Γ\Gamma, we found a critical line on the plane of interaction strength λ\lambda and disorder strength gg. The phase diagram is divided into two regions: in the region with large λ\lambda and small gg, m0m \neq 0 and Γ=0\Gamma = 0; in the other region, m=0m = 0 and Γ0\Gamma \neq 0 for nonzero gg. In particular, there is no coexistence of finite fermion gap and finite scattering rate. These results imply a strong competition between excitonic gap generation and disorder scattering. This conclusion does not change when an additional contact four-fermion interaction is included. For sufficiently large λ\lambda, the growing disorder may drive a quantum phase transition from an excitonic insulator to a metal.Comment: 8 pages, 1 figur

    Analysis of Granular Packing Structure by Scattering of THz Radiation

    Get PDF
    Scattering methods are widespread used to characterize the structure and constituents of matter on small length scales. This motivates this introductory text on identifying prospective approaches to scattering-based methods for granular media. A survey to light scattering by particles and particle ensembles is given. It is elaborated why the established scattering methods using X-rays and visible light cannot in general be transferred to granular media. Spectroscopic measurements using Terahertz radiation are highlighted as they to probe the scattering properties of granular media, which are sensitive to the packing structure. Experimental details to optimize spectrometer for measurements on granular media are discussed. We perform transmission measurements on static and agitated granular media using Fourier-transform spectroscopy at the THz beamline of the BessyII storage ring. The measurements demonstrate the potential to evaluate degrees of order in the media and to track transient structural states in agitated bulk granular media.Comment: 12 Pages, 9 Figures, 56 Reference

    Chaotic hysteresis in an adiabatically oscillating double well

    Full text link
    We consider the motion of a damped particle in a potential oscillating slowly between a simple and a double well. The system displays hysteresis effects which can be of periodic or chaotic type. We explain this behaviour by computing an analytic expression of a Poincar'e map.Comment: 4 pages RevTeX, 3 PS figs, uses psfig.sty. Submitted to Phys. Rev. Letters. PS file also available at http://dpwww.epfl.ch/instituts/ipt/berglund.htm
    corecore